Excitonic dispersion of the intermediate-spin state in LaCoO₃ revealed by RIXS <u>R.-P. Wang</u>,¹ A. Hariki,² A. Sotnikov,² F. Frati,¹ J. Okamoto,³ H. Y. Huang,³ A. Singh,³ D. J. Huang,³ K. Tomiyasu,⁴ C. H. Du,⁵ J. Kuneš,² and Frank M. F. de Groot¹

¹Debye Institute for Nanomaterials Science, Utrecht University; ²Institute for Solid State Physics, TU Wien; ³National Synchrotron Radiation Research Center; ⁴Department of Physics, Tohoku University; ⁵Department of Physics, Tamkang University <u>r.wang@uu.nl</u>

Background

In strongly correlated insulators, the proximity of the excitonic insulator phase is reflected by the presence of dispersive electron-hole excitations with a small gap above a singlet ground state. Recently, such an excitation scenario was proposed to be realized in perovskite oxide LaCoO₃^[1], which is a material well-known by its notorious spin-state crossover. This crossover have been described as a thermal population of excited atomic multiplets from a low spin (LS) ground state to the high-spin (HS) or the intermediate-spin (IS) states. A coexistence of Co ions in the excited (IS or HS) and ground (LS) states in a lattice is expected to cause a sizable disproportionation of Co-O bond lengths. However, this disproportionation has never been observed.

The excitonic scenario of LaCoO₃ describes a propagation of a single IS exciton on the LS background due to superexchange mechanism to the nearest-neighbor ^[1,2]. As usual in periodic systems, the elementary IS excitations have the plane-wave form with the energy dependent on the quasi-momentum q. When the excitation gap is closed the excitations with q-vector of the band minimum form a condensate. For example, the metamagnetic transition observed in high fields has the temperature dependence consistent with exciton condensation without the HS-LS spin-state order ^[1]. Despite this indirect evidence an unambiguous proof of the excitonic physics in LaCoO₃ has been missing.

Method

We employee 2p3d resonant inelastic X-ray scattering (RIXS) of cobalt to reveal this excitonic scenario. The measurements were performed at 05A1 beamline in Taiwan Light Source ^[3]. A 90 meV energy resolution provides sufficient resolution to distinguish different spin states ^[4]. The LaCoO₃ single crystal was grown by the optical floating zone method and aligned to the c-axis in the (pseudo) cubic axis with a lattice constant $a_{cub}~3.83$ Å. 2p3d RIXS spectra were collected from q=(0, 0, 0.26 π) to (0, 0, 0.90 π) at 20 K.

Result and discussion

The experimental spectra show four peaks at around 0.4, 0.7, 1.2, and 1.6 eV ^[4,5]. They are attributed to the excitations from LS (${}^{1}A_{1g}$) ground state to IS (${}^{3}T_{1g}$), IS (${}^{3}T_{2g}$), LS (${}^{1}T_{1g}$), and HS (${}^{5}E_{g}$) states, respectively. The lowest HS (${}^{5}T_{2g}$) state has a negligible RIXS intensity within the present approximation ^[4,5]. The IS ${}^{3}T_{1g}$ peak exhibits a clear q-dependent shift from 490 to 290 meV in the interval from q=(0, 0, 0.26 π) to (0, 0, 0.90 π). The q-dependence of the IS ${}^{3}T_{2g}$ peak at around 0.7 eV is much less pronounced. This sizable dispersion of the IS ${}^{3}T_{1g}$ branch, describing a propagation of a single IS ${}^{3}T_{1g}$ state on the LS background, which match well to the theoretical calculations for propagation of a single IS exciton ^[5].

Conclusion

This observation of the IS $({}^{3}T_{1g})$ excitations dispersion with a sizable bandwidth point to an important role of IS excitations for the low-energy physics of the material. LaCoO₃, therefore, should not be viewed as a static collection of ions in particular atomic states, but rather as a gas of mobile bosonic excitons (IS) above (LS) vacuum.

A. Sotnikov et. al., Sci. Rep. 6, 30510 (2016).
J. F. Afonso et. al., Phys. Rev. B 95, 115131 (2017).
C. H. Lai, J. et. al., Synchrotron Rad. 21, 325 (2014).
K. Tomiyasu et. al., Phys. Rev. Lett. 119, 196402 (2017).
R. Wang et. al., arXiv:1712.04906

The authors are supported by by the European Research Council (ERC) with the grant agreement No. 646807-EXMAG and 340279-XRAYonACTIVE