Active Cu species during CO oxidation on Cu metallated Zr-based UiO-66: *Operando* XAFS-DRIFTS spectroscopy and HAADF-STEM

A. M. Abdel-Mageed,¹ B. Rungtaweevoranit,² M. Parlinska-Wojtan,³ O. M. Yaghi,² R. J. Behm¹

¹Institute of Surface Chemistry and Catalysis, Ulm University, Ulm 89069, Germany

² Department of Chemistry, University of California, Berkeley, California 94720, USA

³ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland ali.abdel-mageed@uni-ulm.de

Metal-organic frameworks (MOFs) emerged recently as highly promising microporous materials with intriguing properties for various applications, including heterogeneous catalysis.¹ Since they allow to precisely tailor and control the electronic properties and local environment of the active sites, their reactivity can be sensitively tuned for a variety of reactions.² Using CO oxidation as model reaction,³ we investigated the catalytic performance of Cu metallated UiO-66, a Zr-based MOF (Zr₆O₄(OH)₄(BDC)₆ (BDC = 1,4-benzene-dicarboxylate)) with high chemical and thermal stability.⁴⁻⁵ Employing a combination of kinetic and *operando* XAFS and FTIR spectroscopy as well as HAADF-STEM measurements, we aim at identifying the chemical nature and structure of the active Cu species during reaction.

Kinetic measurements on the Cu@UiO-66 catalyst, performed after reductive (10% H₂/N₂; 1 h, 250°C) pretreatment in a CO/O₂ (1:1) gas mixture, showed that the activity increases slowly from 4.0 to 6.5 µmol_{CO2} g_{Cu}⁻¹ s⁻¹ between 80°C and 120°C, while from 150°C to 250°C the increase was much more pronounced, from 7.0 to 144 µmol_{CO2} g_{Cu}⁻¹ s⁻¹. Time-dependent measurements at 250°C revealed a stable activity, with no measurable deactivation over 1500 min. Time-resolved diffuse reflectance FTIR (DRIFTS) measurements at temperatures between 80°C and 250°C indicated that CO adsorbs as mono and/or multiple-carbonyls on Cu¹⁺ (2138, 2120, 2109 cm⁻¹).⁶ On the other hand, XANES measurements at the Cu K-edge showed that after pretreatment Cu exists mainly as Cu¹⁺, while during CO oxidation a gradual transformation of Cu¹⁺ to Cu²⁺ occurs, reaching a composition of 30 ± 5 % Cu¹⁺ and 70 ± 5 % Cu²⁺ under steady-state conditions. The dominance of Cu²⁺ during reaction was confirmed by XPS measurements after reaction, which revealed a strong Cu 2p satellite peak characteristic for Cu²⁺ interacting with surface ligands, e.g., OH groups or carboxylate.⁶ Based on EXAFS measurements, Cu is predominantly bound to oxygen, with an average coordination of 2.0±0.5 at a Cu-O bond distance of 1.90±0.02 Å under steady-state conditions.⁷ In agreement with those findings, HAADF-STEM measurements indicated that Cu exists as highly dispersed atomic species, both in fresh Cu@UiO-66 and after subsequent reaction. Finally, results of detailed structural characterization and from DFT computations of the Cu@UiO-66 will be presented.

Consequences of these findings for the mechanistic understanding of the CO oxidation reaction on these catalysts will be discussed.

References

- (1) H. Furukawa et al., *Science* **2013**, *341*, 1230444.
- (2) B. Rungtaweevoranit et al., Nano. Lett. 2016, 16, 764-7649.
- (3) M. M. Schubert et al., J. Catal. 2001, 197, 113.
- (4) J. Cavka et al., J. Am. Chem. Soc. 2008, 13850-13851.
- (5) K. M. Choi et al., J. Am. Chem. 2017, 139, 356-362.
- (6) Wu et al., *Catal. Sci. Technol.* **2011,** *1*, 601-608.
- (7) F. Giordanino et al., . Dalton Trans. 2018, 42, 12741-12761.