U-induced changes in crystal-field of Th⁴⁺ in Th_{1-x}U_xO₂ mixed oxides

Hongliang Bao, Jing Zhou, Linjuan Zhang, Jian Lin, Yuying Huang and Jian-Qiang Wang Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China baohongliang@sinap.ac.cn

Thorium-uranium mixed oxides exist in different stages of the thorium fuel cycle. Knowledge of the Th local structure is a prerequisite for a better understanding of the physicochemical properties of $Th_{1-x}U_xO_2$ mixed oxides involved in Th-based nuclear fuel cycle.

The crystalline electric field (CEF) splitting of 6*d* shell in Th_{1-x}U_xO₂ (x=0.25, 0.5, 0.75) solid solution were probed by using the X-ray absorption near edge spectroscopy (XANES) at the Th L₃-edge measured in the high energy-resolution fluorescence detection (HERFD) mode of an X-ray emission spectrometer by monitoring the maximum of the L_{$\beta5$} (5d₅/2–2p_{3/2}) emission line, which can not be obtained by conventional X-ray absorption methods.

The detected CEF splitting between the $6d e_g$ and t_{2g} orbitals in ThO₂ consisting of ordered Th-O₈ cubes with cubic symmetry for the Th⁴⁺ ion is ~3.5eV. Because the split peaks of white line corresponding to the crystal-field splitting of the unoccupied 6d states were resolved in the HERFD-XANES spectra, the analysis of these split peaks revealed that an increase of the U content involves the distortion of the Th-O₈ cubes in the Th_{1-x}U_xO₂ mixed oxides.

The lower symmetry of the $Th-O_8$ cube induced by the incorporated U trends to reduce the crystal-field effect.

This work was financially supported by the project of National Natural Science Foundation of China (Grant No. U1532259, 21701183).