Electronic and local structure of $CaBaCo_{4-x}M_xO_7$ (M= Fe, Zn) revealed by X-ray absorption spectroscopy.

J. Blasco¹, V. Cuartero², G. Subías¹, J. García¹, J. A. Rodríguez-Velamazán³, C. Ritter³
(1) Instituto de Ciencia de Materiales de Aragón, Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain)
(2) ESRF-The European Synchrotron, Grenoble (France)
(3) Institut Laue-Langevin, Boîte Postale 156, 38042 Grenoble (France)
jbc@unizar.es

Magnetoelectric materials attract a great interest due to their wide applications in spintronics. Most of them are based on transition metal oxides with polar structures showing magnetic frustration. This is the case for CaBaCo₄O₇, which is ferrimagnetic below $T_c=64K$ and also shows a linear magnetoelectric coupling below this temperature [1]. *Ab-initio* calculations proved that the material is pyroelectric, and the large pyroelectric currents observed were ascribed to exchange-striction effects. It adopts an orthorhombic unit cell (space group *Pbn*2₁). The crystallographic structure of CaBaCo₄O₇ consists of a stacking of alternating triangular (T) and kagomé (K) layers of CoO₄ tetrahedra along the **c** axis. There are four different crystallographic sites for Co: Co1 stays at the T layer, while Co2, Co3, and Co4 are in the K layers [1] and ferrimagnetism appears because the magnetic moments at the Co1 and Co4 sites are larger than those at the Co2 and Co3 sites. The stoichiometric formula corresponds to CaBaCo₂²⁺Co₂³⁺O₇ and therefore the nominal oxidation state for Co is 2.5+. Furthermore, the substitution of Co with another transition metal may be useful to increase the transition temperature and magnetic coupling.

To fully characterize the tetrahedral distortion on $CaBaCo_4O_7$ and the effects of doping with Fe and Zn on Co sublattice, we performed XAS measurements as a function of temperature on Co, Fe and Zn K edges at BM23 at the ESRF (Grenoble, France). CaBaCo_{4-x}Fe_xO₇ (x=0.5, 1, 1.5, 2) and CaBaCo_{4-x-y}Fe_xZn_yO₇ (x=0, 1, 2 and y=1) samples were synthesized by solid state chemistry reactions and the resulting powders were pressed into pellets mixed with cellulose for optimized XAS transmission measurements.

From XANES, we conclude that a mixed-valence oxidation state is found for Co atom in all the studied CaBaCo_{4-x}M_xO₇ (M=Fe or Zn) samples, with a combination of Co²⁺ and Co³⁺ in their formal ionic species. Fe and Zn are incorporated as Fe³⁺ and Zn²⁺ in the whole series. The analysis of EXAFS measurements show that the largest Debye-Waller factors are found for the intermediate Co^{3+/2+} valences, indicating either a larger distortion or the occupation of different crystallographic sites (disordered distribution).

EXAFS measurements as a function of temperature show the presence of a local disorder highly localized in the CoO₄ tetrahedra that remains unchanged for all the samples except for the parent CaBaCo₄O₇ compound. A small but appreciable increase in the local distortion of the CoO₄ tetrahedra is observed at the magneto-electric transition temperature for this sample. This reveals the occurrence of a local magneto-elastic coupling at the ferrimagnetic phase that may be related to the observation of the pyroelectric effect in this composition.

[1] V. Caignaert et al., Phys. Rev. B.81, 094417 (2010).

The authors acknowledge the ESRF for granting beamtime and the financial support of the Spanish Ministerio de Economía y Competitividad, Project MAT2015-68760-C2-1-P.