Detection of minute phase changes occurring over MoS_2 catalysts under H_2O and H_2S by employing modulated excitation X-ray absorption spectroscopy

<u>Abhijeet Gaur¹</u>, Trine Marie Hartmann Dabros², Martin Høj², Alexey Boubnov³, Tim Prüssmann⁴, Felix Studt⁴, Anker Degn Jensen², Jan-Dierk Grunwaldt^{1, 4}

¹Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 18/20, Karlsruhe, D-76131 (Germany).

²Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Søltofts Plads 229, Kgs. Lyngby, DK-2800 (Denmark).

³Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (USA).

⁴Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76131 (Germany).

abhijeet.gaur@kit.edu

Introduction

Catalytic hydrodeoxygenation (HDO) of biomass oxygenates is a key step in removing oxygen from bio-oil where hydrogen is used to exclude oxygen from the bio-oil [1]. Ni and Co promoted MoS₂ is catalytically active for these HDO reactions. Water formed as a by-product during HDO has been reported to deactivate non-promoted MoS₂ based catalysts probably due to oxidation of the sulfided edges of the active phase [2]. In this work, MoS₂, Ni-MoS₂, and Co-MoS₂ supported on MgAl₂O₄ and sulfided in 10% H₂S/H₂ have been studied using *in-situ* X-ray absorption spectroscopy (XAS) at the Mo K- and Ni K-edges. *In-situ* XAS has been coupled with modulation excitation spectroscopy (MES) to detect and study the exchange of S with O atoms at the surface sites with high sensitivity.

Methods

The catalysts were prepared by the incipient wetness impregnation on a water tolerant and attrition resistant MgAl₂O₄ spinel support [3]. Sulfidation was performed *in-situ* at 400 °C. Quick XAFS spectra at 10 Hz were recorded in transmission mode at the SuperXAS beamline at the Swiss Light Source (SLS, Villigen, CH). Spectra were collected separately at the Mo K-edge (20,000 eV) for all catalysts and also at the Ni K-edge (8,333 eV) for Ni-MoS₂ under the same experimental conditions. By means of a fixed bed quartz capillary reactor with Oxford heater, *insitu* studies were conducted on these samples. MES experiments were carried out at 400-450 °C by periodically cycling between 3% H₂O/H₂ and 1000ppm H₂S/H₂.

Results and discussion

The features present in the demodulated Mo K-edge XANES spectra of the non-promoted and Co promoted sample treated at 400 °C matched the difference spectrum of MoS₂ and MoO₃ references. Thus, Mo-O bonds were formed by breaking some Mo-S bonds during H_2O/H_2 exposure, while the reverse process was occurring under the consecutive H_2S/H_2 exposure. For Ni-MoS₂, H_2O induced changes were delayed effectively, indicating that the sample was comparatively less affected under these conditions (stabilization by Ni promotion). For a nonpromoted catalyst treated at 450 °C, the first two peaks of the demodulated spectra matched the difference spectrum, MoS_2 -(MoO_3+Mo), which indicates that reduction of Mo sulfide to metallic Mo took place simultaneously to oxidation under the influence of H_2O/H_2 . This was supported by analysis of the corresponding demodulated EXAFS spectra. For Ni-MoS₂, the Ni K-edge XANES and EXAFS spectra extracted from the MES analysis showed that Ni is highly prone to oxidation under the effect of H_2O/H_2 flow thereby reducing the effect of H_2O at Mo.

Conclusions

XANES and EXAFS data extracted by MES analysis showed that the Mo/Ni atoms at the surface of MoS_2 particles exchange sulfur with oxygen when exposed to H_2O , and that they were completely resulfided when H_2S without H_2O was supplied in the feed. A non-promoted sample also showed simultaneous formation of reduced and oxidized phases of Mo under H_2O/H_2 . Thus, MES coupled XAS proved to be a very useful technique in unravelling the very small and dynamic phase changes occurring in these HDO active catalysts.

[1] P.M. Mortensen, J.-D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, Appl. Catal. A 407 (2011) 1.

- [2] M. Badawi et al., J. Catal 282 (2011) 155.
- [3] T. M. H. Dabros, A. Gaur, A. D. G Pintos, P. Sprenger, M. Høj, T. W. Hansen, F. Studt, J. Gabrielsen, J.-D. Grunwaldt, A. D. Jensen, Appl. Catal. A 551 (2018) 106