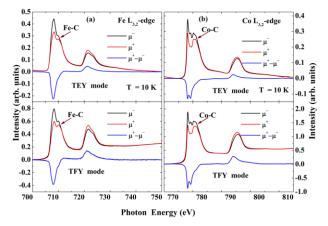
Structural Modifications in Magnetic Multi-walled Carbon Nanotubes by Swift Heavy Ion Irradiations: XAS and XMCD Study


Sanjeev Gautam¹, Keun Hwa Chae², P. Thakur³, Saji Augstine⁴, Han-Koo Lee⁵, K. Asokan⁶ and Navdeep Goyal⁷

¹SSB UICET, Panjab University, Chandigarh, Chandigarh, Chandigarh, India
²Advanced Analysis Center, Korea Institute of Science and Technology, South Korea
³Diamond Light Source Ltd., Didcot, Oxfordshire, OX11 0DE, U. K.
⁴Department of Physics, Deva Matha college, Kottayam, Kerla, India
⁵Beamline Division, Pohang Accelerator Lab, Pohang, South Korea
⁶Material Science Division, Inter-University Accelerator Center, New Delhi, India
⁷Department of Physics, Panjab University, Chandigarh, India
Fax:+91-172-2783336, E-mail: sgautam@pu.ac.in

Carbon nanotubes (CNTs) possess unique mechanical and electronic properties suitable for fabricating the nano-scale building blocks of nanodevices [1]. One of the requirements for applications is to modify or cut the CNT in small dimensions in the order of few nanometers. To this respect, we investigate the effect of heavy ion beams irrdiation, namely, 120 MeV of Fe- and Co-ion beam irradiation on CNT synthesized by chemical vapor deposition (CVD) technique [2].

The ion fluence selected for this study was 1×10^{13} ions/cm². Ion irradiation was carried out at

Inter-University Accelerator Centre, New Delhi, India. This research reports the experimental results obtained from X-ray diffraction pattern and images of scanning electron microscopy (SEM) and transmission electron microscope (TEM) measured at Advanced Analysis Center, KIST, Korea. These results clearly demonstrate that heavy ions induce modifications in the morphology and magnetic properties of the system. Apart from above studies, the near-edge x-ray absorption spectroscopy investigation has been used to understand the modifications in the electronic structures of MWCNTs.

Figure 1: XMCD spectra at Fe and Co L32-edge for FeCNT and CoCNT respectively.

References

- 1. E. Wohlfarth, in: G. Rado, H. Suhl (Eds.), Magnetism, Vol. 3 (Academic Press, New York, 1963).
- 2. S. Gautam, P. Thakur, S. Augustine, J.K. Kang, J.Y. Kim, et al. arXiv: 1111.5416v1 (Nov. 23 2011).