## Understanding the Mechanism of Superconductivity in K<sub>2-x</sub>Fe<sub>4+y</sub>Se<sub>5</sub> by Using X-ray Spectroscopic Techniques

<u>Hsiao-Tsu Wang<sup>1\*</sup></u>, Anirudha Ghosh<sup>2</sup>, Chih-Han Wang<sup>3,4,</sup>, Chi-Liang Chen<sup>5</sup>, Yi-Sheng Liu<sup>6</sup>, Jyh-Fu Lee<sup>5</sup>, Jing-Hua Guo<sup>6</sup>, Maw-Kuen Wu<sup>1,3</sup> and Way-Faung Pong<sup>2</sup>

<sup>1</sup>Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan

<sup>2</sup>Department of Physics, Tamkang University, Tamsui 251, Taiwan

<sup>3</sup>Institute of Physics, Academia Sinica, Taipei 106, Taiwan

<sup>4</sup>Department of Electronic and Computer Engineering, National University of Science and Technology, Taipei 106, Taiwan

<sup>5</sup>National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

<sup>6</sup>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA e-mail:hsiaotsu0108@gmail.com

## Abstract

Recent discovery of potassium-intercalated iron selenides K2-xFe4+ySe5 superconductor with  $T_c \sim 31$ K introduces new members to this exciting family of Fe-based superconductors. It exhibits peculiar micro-structural properties, like the unique phase separation, Fe vacancy order-disorder and antiferromagnetic order, which distinguish them from other Fe-based superconductor. We have used synchrotron techniques like X-ray absorption near-edge structure (XANES), extended x-ray absorption fine structure (EXAFS) and x-ray emission spectroscopy (XES) to investigate the relationship between electronic and atomic structures in the evolution of superconductor. The high-T<sub>C</sub> superconductor, SQ, (K<sub>2-x</sub>Fe<sub>4+v</sub>Se<sub>5</sub>) and non-superconductor, Q, (K<sub>2</sub>Fe<sub>4</sub>Se<sub>5</sub>) samples have been synthesized by quenching from various temperatures, 820 °C (SQ-820 and Q-820) and 750 °C (SQ-750 and Q-750). The EXAFS spectra at Fe K-edge show enhanced local structural disorder around Fe atom in SQ samples as compared to the Q samples. Moreover, this local disorder in SQ-820 is higher than that in SQ-750 at the Fe-Fe bond, and hence strongly associated with the superconductivity by increasing the concentration of Fe atom. According to the Fe  $L_{\alpha,\beta}$ -edge XES spectra, the SQ-820 sample revealed the lowest resonant ratio factor,  $I(L_2)/I(L_3)$ , suggesting an increase in Fe low-spin state which subsequently enhance the superconducting behavior. The Fe  $L_{3,2}$ -edge XANES suggest that the number of unoccupied Fe 3d state in SQ-820 (Q-750) sample is the lowest (highest), whereas, the highest (lowest) number of unoccupied Se 4p state in SQ-820 (Q-750) is revealed in the Se K-edge XANES. This suggest that the charge transfer effect resulted in the lowest (highest) spin state of Fe in SQ-820 (Q-750). These observations clearly elucidate that the spin state of Fe atom, charge transfer effect and Fe atom structure order-disorder are closely associated with the superconducting behavior in K<sub>2-x</sub>Fe<sub>4+y</sub>Se<sub>5</sub>.