Correlated strain fluctuations in BaPb_{1-x}Bi_xO₃ promoting high temperature quantum coherence by novel Scanning-Micro-XANES

S. Macis^(1,2), G. Campi⁽³⁾, R. Albertini⁽⁴⁾, A. Marcelli^(2,5) P. Giraldo Gallo⁶, T.H. Geballe⁷, I.R. Fisher⁷ and A. Bianconi^{3,5}

¹Department of Mathematics and Physics, University di Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

²Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, 00044, Frascati, Italy
³Institute of Crystallography, CNR, via Salaria Km 29.300, Monterotondo Roma, 00015, Italy
⁴Department of Mathematics and Physics, University of Rome Tre, Via della Vasca Navale 84, 00146
Rome, Italy
⁵Rome International Centre for Material Science Superstripes, RICMASS, via dei Sabelli 119A, 00185
Rome, Italy
⁶ Universidad de los Andes, Department of Physics, Carrera 1 18A-10, Bogota, Colombia

⁷Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University Stanford, USA

salvatore.macis91@gmail.com

Background

Although high temperature superconductors are complex materials it is an open question if complexity is detrimental or favors quantum coherence at high temperature. As a matter of fact, similar to cuprates, the bismuthate superconductors seem to be the archetypal systems to study the emergence of quantum coherence and lattice fluctuations. While the dimorphic composition of the BaPb_{1-x}Bi_xO₃ was found to be characteristic of the superconductive behaviour, the particular disorder, which promotes quantum coherence is not known.

In the present work we have used the specific feature of XANES spectroscopy to probe the local geometry at nanoscale of complex oxides [1-3] in order to get, for the first time, the statistical spatial distribution of the local lattice fluctuations in the $BaPb_{1-x}Bi_xO_3$ by using scanning micro XANES at the Bi and Pb L₃-edges.

Methods

Recently, novel experimental approaches, like scanning micro x-ray diffraction and scanning micro-XANES [4-6] have been developed to unveil the features of inhomogeneity extending from nanoscale to microscale. Since it is possible to map the spatial distribution of the sample surface using the scanning micro-XANES technique, our research has been focused to use this technique to investigate the real space distribution of the local lattice distortions as a function of doping and temperature. In particular, we used at ESRF in Grenoble, the ID24, a beamline equipped with an energy dispersive XANES spectrometer and a unique setup for real-space scanning and low temperature measurements with high quality data. Indeed, the lack of moving parts, due to the particular setup of the beamline, provides a small and stable focal spot (~5×5 μ m² at Pb and Bi L₃-edges and a photon flux of ~10¹⁴ ph/s) necessary for the scanning micro-XANES [3].

Results

In order to span the superconducting dome three single crystals with x=0.19, 0.25 and 0.28 have been investigated as a function of temperature between 300 K and 5 K. Since XANES spectroscopy probes local structure around the photo-absorber, the Pb and Bi L₃-edge spectra of

these crystals show clear differences of the bond length with picometer resolution going from one to another spot. By spatial mapping we have obtained the local strain fluctuations at the Pb and Bi sites. The chemical inhomogeneity and the strain inhomogeneity have been determined. We have found clear evidence for the coexistence of polaronic distorted and flat lattice portions [2,6] in the superconducting range. The key result of this work has been the evidence of a correlated disorder with a power law distribution in the low temperature superconducting case, which supports the emergence of the superconducting phase in a filamentary hyperbolic space. [4,7,8]

Conclusions

This work provides the clear evidence that micro-XANES represent a direct way to probe the statistical distribution of the local strain field in a superconducting crystal, with a picometer spatial resolution supporting the occurrence of lattice inhomogeneity in these systems [9,10].

- 1 A. Bianconi, S. Doniach, D. Lublin, Chemical Physics Letters 59 (1), 121 (1978)
- 2 A. Bianconi, M. Missori, Solid State Communications 91 (4), 287 (1994)
- 3 N. Poccia et al., Applied Physics Letters 104, 221903 (2014)
- 4 G. Campi et al., *Nature* 525 (7569), 359 (2015)
- 5 N. Poccia et al., Superconductor Science and Technology 30 (3), 035016 (2017)
- 6 A. Bianconi, Nature Physics 9, 536 (2013)
- 7 G. Campi et al., ACS Nano **12**, 729 (2018)
- 8 G. Campi, A. Bianconi, J Supercond. Nov. Magn. 29 (3), 627 (2016)
- 9 P. Giraldo-Gallo et al., J Supercond. Nov. Magn. 26, 2675 (2013)
- 10 P. Giraldo-Gallo et al., Nature Communications 6, 8231 (2015).

We thank Michael Di Gioacchino, Sakura Pascarelli, Olivier Mathon and the staff of the ID24 beamline at ESRF for the experimental support.