X-ray absorption spectroscopy as a tool for in situ investigating sulfur poisoning and regeneration of ruthenium supported nanoparticles for dry biomass derived syngas methanation J. Kuzmenko¹, T. Schildhauer¹, C. Coperet², M. Nachtegaal¹ ¹Paul Scherrer Institute, 5232, Villigen, Switzerland ²ETH, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland <u>Background:</u> Sulfur-containing compounds, such as H₂S, COS and C₄H₄S, are often present as impurities at part per million (ppm) level in syngas produced by the gasification of biomass and are one of the causes of the methanation catalysts deactivation. Hence sulfur-containing species should be either removed from the stream before reaching the catalyst by a separate gas cleaning step or a poisoned catalyst should be efficiently regenerated, the latter is preferred since it simplifies the process and reduces the total cost.¹ Methods: In this work, the oxidative regeneration after sulfur poisoning of the supported ruthenium catalysts (Ru/Al₂O₃ and Ru/SiO₂) was investigated and improved using *in situ* X-ray absorption spectroscopy (XAS). *In situ* XAS measurement at Ru K-edge was employed to detect adsorption and removal of sulfur from Ru surface while XAS at S K-edge allowed determining the speciation of sulfur in a catalyst under relevant operating conditions. Results: Firstly, Ru K-edge XAS data suggested that adsorbed sulfur can be removed from the Ru surface via oxidative treatment during several consecutive poisoning-regeneration cycles. In addition, particle sintering due to an oxidative treatment was detected by XAS and confirmed with TEM. Using XAS at the S K-edge, we have established that the formation of S⁺⁶ (~ 2482 eV) species is taking place during oxidative regeneration of sulfur-poisoned catalyst both on alumina and to a smaller extent also on silica support. These sulfate-like species can be fully decomposed with H₂ from SiO₂ but only partially from Al₂O₃. Simultaneous measurement of the reactor outlet composition using a mass spectrometer (MS) showed a) higher SO₂ concentration during oxidative regeneration for Ru/SiO₂ and b) a decrease in methanation activity for both catalysts. However, Ru/Al₂O₃ deactivated very quickly in the subsequent sulfur-free feed whereas Ru/SiO₂ remained stable suggesting reduction of the stored sulfates on the Al₂O₃ support that subsequently re-poison the catalyst.² In addition, in a separate off-line test, Ru/SiO₂ showed a higher methane production per cycle after 14 poisoning-regeneration cycles. <u>Conclusion</u>: Our data suggest that sulfur adsorbed on the Ru surface is removed by an oxidative regeneration as SO_2 , which interacts with the support forming sulfates. Using SiO_2 as a catalyst support improves the regeneration efficiency which could be attributed to its lower sulfur storage as compared to Al_2O_3 . However, sintering of Ru on both supports still remains an issue lowering the activity with each oxidative regeneration. ## References - 1. Rhyner, U. in Schildhauer, T.J. and Biollaz, S. (Eds), Synthetic Natural Gas from Coal, Dry Biomass, and Power-to-Gas Applications, Hoboken, New Jersey: John Wiley & Sons, pp. 43, 57, (2016) - 2. König C. F. J., et al., Catal. Today, 229, 56 63, (2014).