High temperature reactions of UO₂, ZrO₂, B₄C, CaO, and SiO₂ under reducing and oxidizing atmospheres

<u>Akihiro Uehara</u>^{1*}, Daisuke Akiyama ², Chiya Numako ³, Shino Takeda-Homma ⁴, Atsushi Ikeda-Ohno ⁵, Yasuko Terada ⁶, Toshiaki Ina ⁶, Kiyofumi Nitta ⁶, Akira Kirishima ², and Nobuaki Sato ²

¹ Research Reactor Institute, Kyoto University, Japan

² Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan
³ Graduate School of Science, Chiba University, Japan
⁴ National Institutes for Quantum and Radiological Science and Technology, Japan

⁵ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Germany

⁶ Japan Synchrotron Radiation Research Institute. Japan

*e-mail: auehara@rri.kyoto-u.ac.jp

Introduction

Uranium and several other radioactive materials reacted with zircaloy(Zry) and/or its oxide, ZrO₂, presented in the fuel cladding, to form fuel debris at the Fukushima Daiichi Nuclear Power Station in 2011. Under very high temperature conditions, the melt core, mainly consisting of the control rods (stainless steel rod filled with B₄C) and fuel assembly (UO₂ and Zry) materials, was solidified at the lower head of the pressure vessel. In addition, the melt core was also solidified at the lower head of the pressure vessel. In addition, the melt core was also solidified at the lower head of the pressure vessel. In addition, the melt core was also solidified at the lower head of the pressure vessel. In addition, the melt core was also solidified at the lower to forward a safe and controlled decommissioning process, structural and thermodynamic estimations of the fuel debris under various atmospheric conditions such as reducing and oxidizing atmospheres have been conducted¹⁻². In the present study, the local structure of basic uranium/zirconium compounds has been characterized in different oxidation states and under treatment in the presence of B₄C, CaO and SiO₂ with different temperatures ranging from 1473 to 1873 K. These reactions are of specific interest to the interaction between nuclear fuel and cladding tube materials.

Results and Discussion

The uranium and zirconoum compounds were characterised by powder X-ray diffraction and XAFS at the U-L_{III} edge and Zr-K edge. XAFS measurements were performed in transmission mode at BL01B1, SPring-8, Japan, using Si(311) double crystal monochromator. A suite of principal component analysis including target transformation and iterative target transformation was performed both on the acquired XANES and EXAFS spectra using the program code ITFA developed by Rossberg³. The XAFS measurements of UO₂ and ZrO₂ mixtures, treated at temperatures from 1473 to 1873 K under an oxidizing atmosphere (Ar + 2% O₂), indicated that $U_2Zr_5O_{15}$ formations occurred < 1573 K, whereas UO_2 was the main product at temperatures > 1773 K. In the absence of ZrO_2 , UO_2 was oxidized to U_3O_8 indicating that UO_2 was stabilized by the formation of solid solution of $Zr_{v}U_{1-v}O_{2}$. Formation equilibrium between UO₂ and UB₄ was observed under a reducing atmosphere (Ar + 10% H₂) from 1473 to 1873K. However, when ZrO₂ was present within mixtures along with UO2 and B4C, it was found that Zr was more reactive than U by forming ZrB₂ at 1773 K. The inclusion of CaO in a mixture with UO₂ under an oxidizing atmosphere resulted in the formation of CaUO₄. Solid solution was the main product of the CaO and UO₂ mixture under a reducing atmosphere and then CaZrO₃ was formed in the CaO, UO₂ and ZrO₂ mixtures. This investigation shows a potential way to understanding the interaction between the nuclear fuels and the cladding materials enabling to examine possible decontamination procedures.

References

1. M. Takano, et al., J. Nucl. Mater., 443, 32-39, (2013).

- 2. N. Sato, et al., Enrgy Proced, **39**, 102-109, (2013).
- 3. A. Rossberg, et al., Environ. Sci. Technol., 43, 1400-1406, (2009).